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Chapter 1: Introduction and Preliminaries

Fixed point theory is a beautiful mixture of analysis, topology and
geometry. It has been a flourishing area of research for many
mathematicians.

In particular, fixed point theorem has been applied in such field as
mathematics engineering, physics, economics, game theory, biology and
chemistry etc.

Let X be a non-empty set and T be a self map on X . A point x0 ∈ X is
called a fixed point of T if Tx0 = x0; that is, a point which remains
invariant under the transformation T is called a fixed point of T .

For example, let T : [0, 1]→ [0, 1] be defined by Tx =
2x

7
. Then

T (0) = 0 and hence 0 is a fixed point of T .
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If T is not a self-mapping, it is plausible that the equation x = Tx has no
solution. In this situation, we may find an element x ∈ X which is close to
Tx in some sense.

This point becomes a concept of best proximity point theorem.This
theorem guarantees the existence of an element X such that

d(x ,Tx) = inf {d(a, b) : a ∈ A, b ∈ B} = d(A,B),
A0 = {a ∈ A : d(a, b) = d(A,B) for some b ∈ B},
B0 = {b ∈ B : d(a, b) = d(A,B) for some a ∈ A},

then x is called a best proximity point of non-self mapping T.

If d(A,B) = 0,then a fixed point and best proximity point are same
point.If the mapping under consideration is a self mapping,it may be
observed that a best proximity point theorem boils down to the fixed point
theorem under certain suitable conditions.
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Chapter 2

Some best proximity theorems for α− ψ rational proximal contractive
conditions in Multiplicative Metric Spaces.

() June 21, 2018 6 / 57



Definition

Let X be a non-empty set. Multiplicative metric is a mapping
d : X × X → R+ satisfying the following conditions such that for all
x , y , z ∈ X :

(p1) d(x , y) ≥ 1 and d(x , y) = 1 iff x = y ,

(p2) d(x , y) = d(y , x),

(p3) d(x , z) ≤ d(x , y).d(y , z)

Then the function d is said to be a Multiplicative Metric on X and (X,d) is
called a Multiplicative Metric Space.
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Definition

Let (X , d) be a multiplicative metric space and A, B be two non-empty
subsets of X . Let T : A→ B and α : A× A→ [0,∞) be the functions.
Then T is said to be (α− ψ) rational proximal contraction, if for all
x , y , u, v ∈ A and ψ ∈ Ψ3 such that

d(u,Tx) = d(A,B)

d(v ,Ty) = d(A,B) =⇒ α(x , y)d(u, v) ≤ ψ(M(x , y))

where,
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Definition

M(x , y) = max{d(x , y),
d(x ,Tx).d(y ,Ty)

1 + d(x , y)
− d(A,B),

d(x ,Ty).d(y ,Tx)

1 + d(x , y)
− d(A,B),

d(x ,Ty).d(y ,Tx)

1 + d(Tx ,Ty)
− d(A,B)}
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Theorem

Let A and B be a two non-empty closed subsets of a complete
multiplicative metric space (X , d) such that A0 and B0 are non-empty. Let
the mappings α : A× A→ [0,∞), T : A→ B and G : A→ A satisfy the
following conditions.

(i) T is (α− ψ) rational proximal contraction mapping and T is an α-
proximal admissible mapping.

(ii) g is an isometry

(iii) A0 ⊆ g(A0)

(iv) T (A0) ⊆ B0.

(v) If {xn} is a sequence in A0 such that α(gxn, xn+1) ≥ 1 and
gxn → gx ∈ A, then α(xn, gx) ≥ 1 for all n ∈ N

(vi) There exists x0, x1 ∈ A0 such that d(gx1,Tx0) = d(A,B) and
α(x0, x1) ≥ 1

Then T has a unique best proximity point if for every y , z ∈ A such that
d(gy ,Ty) = d(A,B) = d(gz ,Tz) and α(gy , gz) ≥ 1.
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Corollary

Let A and B be a two nonempty closed subsets of a complete
multiplicative metric space (X , d) such that A0 and B0 are nonempty. Let
the mappings α, η : A× A→ [0,∞), T : A→ B and G : A→ A satisfy
the following conditions.

(i) T is (α−ψ) rational proximal contraction mapping with respect to η.

(ii) g is an isometry

(iii) A0 ⊆ g(A0)

(iv) T (A0) ⊆ B0.

(v) If {xn} is a sequence in A0 such that α(gxn, xn+1) ≥ η(gxn, xn+1) and
gxn → gx ∈ A , then η(xn, gx) ≥ η(xn, gx) for all n ∈ N

There exists x0, x1 ∈ A0 such that d(gx1,Tx0) = d(A,B) and
α(x0, x1) ≥ η(x0, x1). Then T has a unique best proximity point if for
every y , z ∈ A such that d(gy ,Ty) = d(A,B) = d(gz ,Tz) and
α(gy , gz) ≥ η(gy , gz).
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Corollary

Let A and B be a two nonempty closed subsets of a complete
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Theorem

Let T be a complete multiplicative metric space (X , d) into itself and
α : A×A→ [0,∞) be a given function satisfying the following conditions.

(i) T is α-admissible mapping.

(ii) T is continuous

(iii) g is an isometry and A ⊆ g(A) such that α(x , y) ≥ 1 and
d(Tx ,Ty) ≤ ψ(M(x , y))

where
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Theorem

M(x , y) = max{d(x , y),
d(x ,Tx).d(y ,Ty)

1 + d(x , y)
,

d(x ,Ty).d(y ,Tx)

1 + d(x , y)
,

d(x ,Ty).d(y ,Tx)

1 + d(Tx ,Ty)
}

Then T has a unique fixed point.
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Chapter 3

Best proximity points in Multiplicative Metric Spaces
and Multivalued mappings on Metric Spaces.
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Chapter 3

In this chapter, we focus best proximity point theorems in multiplicative
metric spaces satisfying multiplicative modified rational proximal
contraction condition of the first kind and also prove best proximity points
for multivalued Geometric F - contraction mappings .
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Definition

Let (X , d) be a multiplicative metric space. Let A and B be a nonempty
subsets of X . Then T : A→ B is called a multiplicative modified rational
proximal contraction of the first kind if there exists a non-negative real
numbers α, β, γ, δ with α + β + 2γ + 2δ < 1 such that the conditions

d(u1,Tx1) = d(A,B) and d(u2,Tx2) = d(A,B)

This implies

d(u1, u2) ≤ d(x1, x2)α.[d(x1, u1).d(x2, u2)]β+γ .[d(x1, u2).d(x2, u1)]δ

d(x1, x2)
for all u1,u2,x1,x2 ∈ A
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Theorem

Let (X , d) be a complete multiplicative metric space. Let A, B be a
nonempty closed subsets of X such that A0 and B0 are nonempty and B is
approximately compact with respect to A. Suppose that T : A→ B and
g : A→ A satisfy the following conditions:

a) T is a multiplicative modified rational proximal contraction of the
first kind

b) T (A0) ⊆ B0

c) g is an isometry

d) A0 ⊆ g(A0)

Then there exists a unique point x ∈ A such that

d(gx ,Tx) = d(A,B)

Moreover for any fixed x0 ∈ A0, the sequence {xn} is defined by
d(gxn,Txn−1) = d(A,B) converges to the element x.
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Corollary

Let (X , d) be a complete multiplicative metric space. Let A, B be a
nonempty closed subsets of X such that A0 and B0 are nonempty and B is
approximately compact with respect to A. Suppose that T : A→ B satisfy
the following conditions:

a) T is a multiplicative modified rational proximal contraction of the
first kind

b) T (A0) ⊆ B0

Then there exists a unique point x ∈ A such that

d(x ,Tx) = d(A,B)

Moreover for any fixed x0 ∈ A0, the sequence {xn} is defined by
d(xn,Txn−1) = d(A,B) converges to the element x.
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Definition

Let (X , d) be a metric space. Let Cb(X ) be the family of all non-empty
closed bounded subsets of a metric space (X , d). The Hausdorff metric
induced by d on Cb(X ) is given by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)

}
for every A,B ∈ Cb(X ) ,
where d(a,B)=inf{d(a, b) : b ∈ B} is the distance from a to B⊆ X.

() June 21, 2018 24 / 57



Definition

Let A and B be nonempty subsets of a metric space (X , d). The ordered
pair (A,B) satisfies the property UC ∗∗ if (A,B) has property UC and the
following conditions holds: If {xn} and {zn} are sequences in A and {yn}
be a sequence in B satisfying

1 d(zn, yn)→ d(A,B) as n→∞
2 For each ε > 0, there exists N ∈ N such that

d(xm, yn) ≤ εd(A,B)

for all m > n ≥ N

then d(xn, zn)→ 0 as n→∞.
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Definition

Let A and B be non-empty subsets of a metric space.
Let T : A → 2B and S : B → 2A be multivalued mappings. The ordered
pair (T ,S) is said to be a multivalued Geometric F - contraction if there
exists F ∈ F and τ > 0 such that
H(Tx , Sy) > 0 =⇒ 2τ + F (H(Tx , Sy)) ≤ F (d(x , y)αdist(A,B)1−α),
for all x , y ∈ X , where α ∈ (0, 1).
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Theorem

Let A and B be non-empty closed subsets of a complete metric space X
such that (A,B) and (B,A) satisfy the property UC ∗∗.
Let T : A→ Cb(B) and S : B → Cb(A). If (T ,S) is a multivalued
geometric F -contraction pair, then T has a best proximity point in A (or)
S has a best proximity point in B.
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Chapter 4

Fixed point theorems in Partial Metric Spaces and Quasi Partial
Metric Spaces.
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Chapter 4

In this chapter, we prove some common fixed point theorems in partial
metric spaces and quasi partial metric spaces.
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Definition

A partial metric on a nonempty set X is a mapping p : X × X → [0,∞)
such that for all x , y , z ∈ X :

(p1) x = y ⇐⇒ p(x , x) = p(x , y) = p(y , y),

(p2) p(x , x) ≤ p(x , y),

(p3) p(x , y)= p(y , x),

(p4) p(x , y) ≤ p(x , z) + p(z , y)− p(z , z)

A partial metric space is a pair (X , p) such that X is a nonempty set and
p is a partial metric on X .
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Definition

(see [1]) Two self mappings f and g of a set X are said to be weakly
compatible if they commute at their coincidence points, that is, if fx = gx
for some x ∈ X,then fgx = gfx .

Definition

(see [1]) Let (X,p,4) be a partially ordered set. Two elements x,y of X are
called comparable if x4y (or) y4x holds.

Definition

(see [1]) Let (X,p,4) be a partially ordered set.A mappings f is called weak
annihilator of g if fgx4x for all x ∈ X
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Definition

Let f,g,S and T be self maps on a partial metric space (X , p),then f and g
are said to satisfy almost generalized (S,T)-contractive condition if there
exists δ ∈ (0, 1) such that

p(fx , gy) ≤ δM(x , y)

for all x , y ∈ X ,where
M(x , y) = max{p(Sx ,Ty), p(fx ,Sx), p(gy ,Ty), α(p(Sx , gy) + p(fx ,Ty))},
α ∈(0,1).
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Definition

Let f,g,S and T be self maps on a partial metric space (X,p),then f and g
are said to satisfy almost generalized (S,T)-contractive condition if there
exists δ ∈ (0, 1) such that

p(fx , gy) ≤ δM(x , y)

for all x,y∈X,where

M(x,y)=max{p(Sx,Ty),p(gx,Sx),p(gy,Ty),
p(Sx ,Ty) + p(fx ,Sy)

2
}
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Definition

Let f,g,S and T be self maps on a partial metric space (X,p),then f and g
are said to satisfy almost generalized (S,T)-contractive condition if there
exists δ ∈ (0, 1) such that

p(fx , gy) ≤ δM(x , y)

for all x,y ∈ X,where
M(x , y) =

ψ{max{p(Sx ,Ty), p(fx ,Sx), p(gy ,Ty),
p(Sx , gy) + p(fx ,Ty)

2
}},

where ψ : R+ → (0, 1) and satisfies 0 ≤ ψ(t) ≤ t for t > 0.
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Theorem

Let (X,p,4) be an complete ordered partial metric space.Let f,g,S and T
be self maps on X,with f(X)⊆T(X) and g(X)⊆S(X) and dominating maps
f and g are weakly annihilators of T and S respectively.
Suppose that f and g satisfy almost generalised (S,T)- contractive
condition

p(fx,gy)≤ δM(x,y)

for every two comparable elements x,y ∈X.
If for a non-decreasing sequence {xn} with xn 4 yn for all n and yn →u
implies that xn 4u and further more.

(a1) {f , S}and{g ,T} are weakly compatible,

(a2) one of f (x), g(x),S(x)andT (x) is a closed subspace of X

then f,g,S and T have a common fixed point. Moreover, the set of
common fixed points of f,g,S,T is well ordered iff f,g,S and T have one and
only one common fixed point.
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Corollary

Let (X,p,4) be an complete ordered partial metric space.Let f and T be
self maps on X,with f(X)⊆T(X) and dominating map f is weakly
annihilators of T . Suppose that there exists δ ∈ (0,1) such that

p(fx,fy)≤ δM(x,y)

where
M(x,y) = max{p(Tx,Ty),p(fx,Tx),p(fy,Ty),α(p(Tx,fy)+p(fx,Ty))}
for every two comparable elements x,y ∈X. If for a non-decreasing
sequence {xn} with xn 4 yn for all n and yn →u implies that xn 4u and
further more.

(a1) {f ,T} is weakly compatible.

(a2) one of f(x) and T(x) is a closed subspace of X.

then f and T have a common fixed point.
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Corollary

Let (X,p,4) be an complete ordered partial metric space.Let S and T be
surjective self maps on X,such that S(x)4 x and T(x)4 x for all x∈ X, and
Suppose that there exists δ ∈ (0,1) such that

p(x,y)≤ δM(x,y)

where
M(x,y) = max{p(Sx,Ty),p(x,Sx),p(y,Ty),α(p(Sx,y)+p(x,Ty))}
for every two comparable elements x,y ∈X. If for a non-decreasing
sequence {xn} with xn 4 yn for all n and yn →u implies that xn 4u ,then S
and T have a common fixed point.
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Definition

A quasi-partial metric space on a nonempty set X is a function
q : X × X → [0,∞) such that for all x , y , z ∈ X :

(p1) If q(x , x) = q(x , y) = q(y , y) then x = y ,

(p2) q(x , x) ≤ q(x , y),

(p3) q(x , x)= q(y , x),

(p4) q(x , z) ≤ q(x , y) + q(y , z)− q(y , y)
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Definition

Let T be a self mapping and α : X × X → [0,+∞) be a function.
Then T is said to be α - Orbital admissible if

α(x ,Tx) ≥ 1 =⇒ α(Tx ,T 2x) ≥ 1
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Definition

Let (X , q) be a quasi-partial metric space.where X is a non-empty set. we
say that X is said to be α-left-regular if for every sequence {xn} in X such
that α(xn+1, xn) ≥ 1 for all n and xn → x ∈ X as n→∞, there exists a
subsequence {xn(k)} of {xn} such that α(x , xn(k)) ≥ 1 for all k.

Definition

Analogously, a quasi-partial metric space X is said to be an
α−right-regular if for every sequence {xn} in X such that α(xn, xn+1) ≥ 1
for all n and xn → x ∈ X as n→∞, there exists a subsequence {xn(k)} of
{xn} such that α(xn(k), x) ≥ 1 for all k.

Definition

We say that X is regular if it is both α-left-regular and α-right-regular.
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Theorem

Let (X,q) be a complete quasi partial metric space.
Let T : X→X be a self-mapping. Assuming that there exists ψ ∈ Ψ and a
function α :X×X → [0,∞) such that for all x,y ∈ X

α(x , y)q(Tx ,Ty) ≤ ψ(M(x , y))

Also suppose that the following assertions hold:
(i) T is triangular α-orbital admissible.
(ii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and α(Tx0, x0) ≥ 1
(iii) T is continuous (or) X is α-regular.
Then T has a fixed point u ∈ X and q(u,u)=0.
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Chapter 5

Some fixed point theorems on Multiplicative Cone-b metric spaces
and Multi-valued mappings on b- metric spaces
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Chapter 5

In this Chapter, we prove some fixed theorems using some Multiplicative
contractive conditions in multiplicative cone b - metric spaces and also we
prove a common fixed point theorem for multivalued mappings in b-metric
spaces which is a generalization of a Reich type contraction .
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Definition

Let X be a nonempty set and s≥1 be a given positive real number.A
mapping d : X × X → E such that for all x , y , z ∈ X :

(p1) d(x , y) ≥ 1 and d(x , y) = 1 iff x = y ,

(p2) d(x , y) = d(y , x),

(p3) d(x , y) ≤ [d(x , z).d(z , y)]s

Then the function d is said to be a multiplicative cone b-metric on X and
(X,d) is called a multiplicative cone b-metric space.
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Theorem

Let (X , d) be a Complete multiplicative cone b - metric space with power
s ≥ 1. Suppose the mapping T : X → X satisfies the following Kannan
contractive condition,

d(Tx ,Ty) ≤ (d(Tx , x).d(Ty , y))λ for all x , y ∈ X

where 0 ≤ λ < 1
2 is a constant. Then T has a unique fixed point in X and

for any x ∈ X , iterative sequence {T nx} converges to the fixed point.
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Theorem

Let (X , d) be a Complete multiplicative cone b - metric space with power
s ≥ 1. Suppose the mapping T : X → X
satisfies the contractive condition,

d(Tx ,Ty) ≤ (d(Tx , y).d(Ty , x))λ for all x , y ∈ X

where 0 ≤ λ < 1
2 is a constant. Then T has a unique fixed point in X and

for any x ∈ X , iterative sequence {T nx} converges to the fixed point.
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Theorem

Let (X , d) be a complete cone b- metric space with metric d and
T : X → X be a function with the following condition,

d(Tx ,Ty) ≤ d(x ,Tx)p.d(y ,Ty)q.d(x , y)r ,

for all x , y ∈ X , where p, q, r are non-negative real numbers and satisfy
p + (q + r)s < 1 for s ≥ 1. Then T has a unique fixed point.
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Definition

Let X be a nonempty set and s≥1 be a given positive real number.A
mapping d : X × X → R such that for all x , y , z ∈ X :

(p1) d(x , y) ≥ 0 and d(x , y) = 0 iff x = y ,

(p2) d(x , y) = d(y , x),

(p3) d(x , y) ≤ s[d(x , z) + d(z , y)]

Then the function d is said to be a b-metric on X and (X,d) is called a
b-metric space.
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Definition

Let (X , d) be a b-metric space with constant s ≥ 1. A map
T : X → CB(X ) is said to be multivalued generalized contraction if

H(Tx ,Ty) ≤ ad(x , y) + bd(x ,Ty) + c(d(y ,Tx) + d(Tx ,Ty))

for all x , y ∈ X and a, b, c are non-negative with a + b + 2c < 1.
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Theorem

Let (X , d) be a complete b-metric space with constant s ≥ 1. Let
T : X → CB(X ) is said to be multivalued generalized contraction
mapping. Then T has a unique fixed point.
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Theorem

Let (X , d) be a complete b-metric space with constant s ≥ 1. Let
T : X → CB(X ) be a multivalued mapping satisfied the condition.

H(Tx ,Sy) ≤ ad(x , y) + bd(x , Sy) + c(d(y ,Tx) + d(Tx ,Ty))

for all x , y ∈ X and a, b, c are non-negative with a + b + 2c < 1. Then T
& S have a unique common fixed point.
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